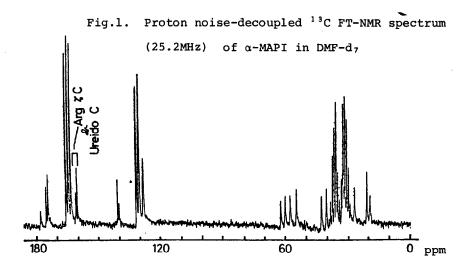
0040-4039/79/0208-0625\$02.00/0

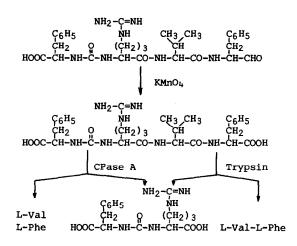

STRUCTURAL ELUCIDATION OF ALPHA-MAPI, A NOVEL MICROBIAL ALKALINE PROTEINASE INHIBITOR, PRODUCED BY STREPTOMYCES NIGRESCENS WT-27

Takashi Watanabe, Kenichi Fukuhara and Sawao Murao* Laboratory of Applied Microbiology, Department of Agricultural Chemistry, University of Osaka Prefecture, Sakai, Osaka 591, Japan

As reproted in previous papers [1, 2], a novel proteinase inhibitor MAPI, produced by *streptomyces nigrescens* WT-27, showed a specific inhibitory activity against various microbial alkaline proteinases, α -chymotrypsin and thiol proteinases. MAPI in the culture filtrate was purified successively <u>via</u> adsorption on Amberlite XAD-2, extraction with n-butanol, chromatography using Amberlite XAD-7, Dowex 1X2, Amberlite CG-50, alumina and silica gel. MAPI was a mixture of three compounds (designated as α -, β -, and γ -MAPI), which showed the same inhibitory spectra but different inhibitory potentials.

α-MAPI was isolated by preparative high performance liquid chromatography (HPLC) and crystallized from aqueous methanol as needles. Properties of α-MAPI were as follows: mp 204 \sim 205°C(dec.); $[\alpha]_D^{2^2}$ -18°(c 1.0, acetic acid); Found: C 58.49, H 6.97, N 15.54%; Calcd. for C_{3.0}H_{4.1}N₇O₆·H₂O: C 58.71, H 7.06, N 15.98%; IR (KBr): 3400 \sim 3300(NH), 1650 \sim 1640(amide I, guanidinium and ureido), 1550 \sim 1540(amide II), 1460 \sim 1440(pheny1), 1390(COOH), 750, 690cm⁻¹(pheny1); UV: $\lambda_{max}^{80\&aq.MeOH}(\varepsilon)$ 268 (304), 264(402), 258(509), 252(440), 247nm(360); PMR[90MHz, δ value(ppm) in DMFd₇]: 0.7 \sim 1.0[6H, CH(CH₃)₂(in Val)], 1.2 \sim 1.9[4H m, CH-CH₂-CH₂-(in Arg)], 1.9 \sim 2.3 [1H m, CH(CH₂)₃(in Val)], 2.9 \sim 3.4[4H m, two CH₂(in Phe)], 3.50[2H t, J=6Hz, -CH₂-NH-(in Arg)], 4.0 \sim 4.7[4H m, four methines], 7.3[10H m, two C₆H₅(in Phe)], 6.6 \sim 8.6 [m, NH, NH₂, OH], 9.6[1H d, J=1Hz, CHO]; ¹³C-NMR[25.2MHz, in DMF-d₇; as shown in Fig.1]; Rf 0.73[cellulose, TLC, CHCl₃-n-butanol-ethanol-28 \approx NH₄OH-H₂O (20:40:50: 27:13)]. α-MAPI gave positive reactions to chlorine-tolidine, Sakaguchi, diacetyl-α-naphtol, Tollens and 2,3,5-triphenyltetrazolium chloride reagents, but

625


negative to ninhydrin reagent. α -MAPI was sparingly soluble in all solvents except acetic acid, dimethylsulfoxide and dimethylformamide.

On hydrolysis with 6N HCl (in evacuated tube, 150°C, 48 hours), α -MAPI gave phenylalanine (0.79mole), valine (1.00mole) and arginine (0.84mole). On hydrolysis at 110°C for 48 hours, it gave phenylalanine (0.10mole), valine (1.00mole) and arginine (0.09mole), suggesting the presence of acid resistant bond such as ureido bond (-NH-C-NH), which was also assumed by its ¹³C-NMR spectrum (Fig.1, Two signals having δ value of 160ppm may be assigned to ureido carbon and guanidinium carbon of arginine residue). On hydrazinolysis (in evacuated tube, 100°C, 6 hours), α -MAPI gave only phenylalanine.

Oxidation of α -MAPI with potassium permanganate gave an oxidation product (α -MAPI-O), which was crystallized from aqueous methanol. Found: C 58.55, H 6.63, N 15.81%; Calcd. for C₃₀H₄₁N₇O₇: C 58.91, H, 6.76, N 16.03%; mp 230 \sim 231 $^{\circ}$ C(dec.); IR(KBr): \sim 3300(NH), 2950(CH), \sim 1720(sh. COOH), 1680 \sim 1620(amide I, guanidinium and ureido), 1550(amide II), 1440 \sim 1460(pheny1), 1390(COOH), 750(pheny1), 700cm⁻¹ (pheny1); UV: $\lambda_{max}^{H_2O}(\epsilon)$ 268(218), 264(316), 258(409), 252(343), 247nm(270); $[\alpha]_D^{22}$ -10°(c 0.5, H₂O); PMR[90MHz, δ value(ppm) in D₂O]: 0.9[6H d, J=7Hz, CH(CH₃)₂(in Val)], 1.3 \sim 1.8[4H m, CH-CH₂-CH₂-(in Arg)], 1.8 \sim 2.3[1H m, -CH₄(CH₃)₂(in Val)], 2.8 \sim 3.3[6H m, two CH₂(in Phe) and -CH₂-NH-(in Arg)], 4.0 \sim 4.6[4H m, four α methines], 7.35[10H m, two C₆H₅(in Phe)]; RF 0.57 (TLC mentioned above). α -MAPI-O gave positive reactions to chlorine-tolidine, Sakaguchi and diacety1- α -naphtol reagents, but negative to Tollens, 2,3,5-triphenyltetrazolium chloride and ninhydrin reagents.

On hydrolysis with 6N HCl, α -MAPI-O gave additional one mole of phenylalanine, suggesting that the aldehyde moiety in α -MAPI was converted to phenylalanine by oxidation.

α-MAPI-O, containing arginine residue, was completely digested into

two fragments by trypsin (pH 8.0, 37°C, 6 hours, ratio 1:25), suggesting that the arginine was L-isomer. Two fragments were isolated by a preparative HPLC using LiChroprep RP-8 (E. Merck).

One fragment (designated as T-1) obtained as needles gave positive chlorinetolidine, Sakaguchi and diacetyl- α -naphtol but negative ninhydrin reactions. IR (KBr): ∿3300(NH), 1650(amide I, guanidinium and ureido), 1550(amide II), 1400 (COOH), 700 cm^{-1} (phenyl); UV: $\lambda_{\text{max}}^{\text{H}_2\text{O}}(\epsilon)$ 268(103), 258(180), 252(153), 247(120); PMR [90MHz, δ value(ppm) in D₂O]: 1.2¹.8[4H m, CH-CH₂-CH₂-(in Arg)], 2.90 and 3.15 $[2H, J_{AB}=13Hz, J_{AX}=8Hz, J_{BX}=5Hz, CH_2 (in Phe)], 3.15[2H t, J=6Hz, -CH_2-CH_2-NH-(in Phe)]$ Arg)], 3.85⁴.05[1H m, CH(in Arg)], 4.25[1H, J_{AX}=8Hz, J_{BX}=5Hz, CH(in Phe)], 7.35 [5H m, C6H5 (in Phe)]; Rf 0.25 (TLC mentioned above). On hydrolysis with 6N HCl (110°C, 44 hours), T-l gave an equimolar amount of phenylalanine and arginine. This fragment was relatively resistant to acid hydrolysis. On hydrazinolysis, T-l gave two C-terminal amino acids, phenylalanine and arginine, the latter being detected as ornithine. Its ¹³C-NMR spectrum indicated the presence of ureido bond (two signals at about 160ppm could be assigned to ureido carbon and guanidinium carbon of arginine residue). Thus the fragment T-l was deduced to be an ureido-type derivative, N-(1-carboxy-2-phenylethyl)carbamoyl-L-arginine.

Anonther fragment (designated as T-2) also obtained as crystals gave positive chlorine-tolidine and ninhydrin reactions, but negative Sakaguchi and diacetyl- α -naphytol reactions. IR(KBr): \sim 3300(NH), 2950(CH), \sim 1680(amide I), 1620(COOH), 1580 \sim 1520(NH, amide II), 1400(COOH), 700cm⁻¹(phenyl); UV: $\lambda \frac{H_2O}{max}(\epsilon)$ 268 (96), 264 (143), 258 (188), 252 (153), 247nm(113); PMR[90MHz, δ value(ppm) in D₂O]: 0.97[6 H d, J=7Hz, CH(CH₃)₂ (in Val)], 1.95 \sim 2.45[1H m, CH(CH₃)₂ (in Val)], 2.95 and 3.20[2H, J_{AB}=15Hz, J_{AX}=8Hz, J_{BX}=6Hz, CH₂ (in Phe)], 3.71[1H d, J=6Hz, α -CH(in Val)], 4.47[1H, J_{AX}=8Hz, J_{BX}=6Hz, α -CH(in Phe)], 7.3[5H m, C₆H₅ (in Phe)]; Rf 0.75 (TLC mentioned above).

On hydrolysis with 6N HCl (110°C, 48 hours), T-2 gave an equimolar amount of L-phenylalanine and L-valine. N-terminus of T-2 was identified as valine by Edman degradation, and C-terminus as phenylalanine by hydrazinolysis. PMR spectrum, TLC and HPLC of T-2 were exactly identical to those of the authentic Lvalyl-L-phenylalanine.

 α -MAPI-O was also digested by carboxypeptidase A (pH 8.0, 4°C, ratio 1:600) to liberate phenylalanine in the first period. After 8 hours, α -MAPI was converted to an equimolar amount of phenylalanine, valine and a compound with positive Sakaguchi reaction, which identified as T-l by TLC and HPLC. From the results described above, it is concluded that the structure of α -MAPI is N-(1-carboxy-2-phenylethyl)carbamoyl-L-arginyl-L-valyl-L-phenylalaninal. Elucidation of configuration of phenylalanine is in progress.

 α -MAPI has different proteinase inhibitory spectra compared with other peptidic proteinase inhibitors with aldehyde and ureido bond, such as antipain [3] and chymostains [4]. The structure of β -MAPI will be described elsewhere.

References

```
1. S. Murao and T. Watanabe, Agric. Biol. Chem., <u>41</u> 1313 (1977).
```

2. S. Murao and T. Watanabe, *ibid.*, <u>42(12)</u>, in press (1978).

- S. Umezawa, K. Tatsuta, K. Fujimoto, T. Tsuchiya, H. Umezawa, H. Naganawa
 J. Antibiotics, 25, 267 (1972).
- K. Tatsuta, N. Mikami, K. Fujimoto, S. Umezawa, H. Umezawa, T. Aoyagi, *ibid.*, <u>26</u>, 625 (1973).

(Received in Japan 25 November 1978)